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8. FLAT BEAM ADAPTER

The flat beam adapter transformation of an angular momentum dominated was first proposed
in the context of electron cooling of high-energy hadron beams [1]. The concept has
subsequently been more thoroughly described [2,3] as well as applied to the problem of
generation of flat electron beams [4]. In this section, we present a brief overview of the process,
and then present an initial design of the optics that achieve the requirements of the proposed
facility.

GENERATION OF THE BEAM IN A SOLENOID FIELD
Electrons are emitted from the photocathode surface into a region of large (~1 kG) solenoidal

magnetic field. In the absence of thermal emittance, or finite spread in transverse velocities, the
individual electrons would follow paths along the lines of magnetic flux. The influence of a
thermal spread in transverse velocities forces the electrons to precess about the magnetic flux
lines. The equations of motion for the electrons in this transport channel can be written in so-
called ‘normal form’ that decouples the 4-D transverse phase space into independently evolving
2-D phase spaces. The normal mode variables in this region are drift-cyclotron or ‘Larmor’
coordinates. This is a ‘guiding center’ description of the motion of particles in a solenoidal field,
which describes the motion of particles not in terms of the absolute Cartesian coordinates

† 

x, ¢ x ,y, ¢ y ( )  or the cylinder coordinates

† 

r, ¢ r ,q, ¢ q ( ) , but rather in terms of the ‘drift’ position

† 

dx,dy( )  of the Larmor center and ‘cyclotron’ rotation 

† 

kx,ky( )  about the Larmor center (see
Figure 8-1). The Larmor coordinates are constructed via the relations
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Here, 

† 

bs = eBz / 2gbmc( )  is the equivalent beta-function in the solenoid channel.

Figure 8-1 Drift-cyclotron coordinates
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It has been shown that the drift-cyclotron coordinates form canonically conjugate pairs [18],
after proper normalization. The 4-D total transverse emittance is constructed from the
independent sub-spaces, 

† 

dx,dy( )  and 

† 

kx,ky( ) , as

† 

en
2 =

1
4

d2 k^
2 = edriftecyclotron ,                                               (2)

This is identical to the form described above, but specifically separates the contributions
arising from the distinct normal modes. These two contributions can be quantified from
parameters arising from conditions at the cathode surface during the emission process. The spot
size of the beam at the cathode can be seen to determine the emittance in the drift plane, since

† 

d2  is proportional to the rms beam spot radius. Finite thermal emittance, originally arising
from a distribution of electron velocities with finite spread, is immediately seen to contribute the
cyclotron emittance that is proportional to the transverse velocity spread. Depending upon the
beam spot radius, the thermal emittance for a Cs2Te photocathode may vary from ~0.5 to 1.5π
mm-mrad. With a solenoid field at the cathode of magnitude ~1 kG, the drift motion emittance
may then be much larger than the cyclotron motion emittance. This can also be stated simply that
the beam radius is much larger than the characteristic Larmor radius of the individual particle
trajectories. This large ratio between drift and cyclotron emittances will be converted to a large
ratio between horizontal and vertical emittances following the skew quadrupole adapter.

EXTRACTION FROM THE SOLENOID FIELD
Exiting the fringe field prepares the beam for the transformation in the skew quadrupole

adapter. As the beam passes through the fringe field region at the end of the solenoid lattice, each
particle is deflected by the radial magnetic field component. The Cartesian phase-space
components are transformed in the thin lens approximation as
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From the definitions above, the drift and cyclotron coordinates are mapped as
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The Cartesian components display coupling between the horizontal and vertical phase spaces
after the fringe field transformation. In the laboratory frame, this motion is displayed as a shear
in the transverse (x y) plane.

However, the drift and cyclotron modes are known from the previous section to describe
independent degrees of freedom. This still remains the case. The drift and cyclotron degrees of
freedom are mapped by the fringe field into independent circular modes with oppositely directed
angular momenta.

That these are bona fide circular modes in the region following the fringe field may be
checked by verifying that particle position is transverse to momentum
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for each degree of freedom separately.  That they are have oppositely-directed angular momenta
along the beamline axis (Lz) is verified by direct calculation of 
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Lz = gbmc x1 ¢ y 1 - ¢ x 1y1( )  for each
independent degree of freedom. For the circular modes derived from the drift and cyclotron
motions, the angular momenta are calculated to be
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From this calculation, we see that the drift and cyclotron degrees of freedom are mapped
entirely onto independent circular modes with oppositely-directly angular momenta. The product
of these two angular momenta is proportional (up to a sign, and factors of mc) to the 4-D
transverse emittance above. The independent circular mode emittances are merely the
magnitudes of their angular momenta (modulo mc). Hence, the large ratio between the drift and
cyclotron emittances from the previous solenoid channel is recovered in the large ratio between
the magnitudes of the angular momenta in the circular modes.

PASSAGE THROUGH THE SKEW QUADRUPOLE BEAM ADAPTER.
The final step in the process is to pass the beam through the skew quadrupole adapter.  We

write the coordinates associated with the drift motion as
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while the coordinates associated with the cyclotron motion are expressible as
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The quadrupole adapter lattice is constructed so that the relative betatron phase advance
between the x and y phase spaces is π/2, this condition cancels the remnant coupling between the
x and y phase spaces. The adapter transforms the two circular modes into the two planes (x, x’)
and (y, y’) oriented at 45° with respect to the quadrupoles' normal planes. Thus, in order to
transform the drift component in the solenoid into purely horizontal motion, the adapter has to be
rotated by 45°. The resulting linear transformation is then written as
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This linear transformation acts upon the independent cyclotron and drift modes, producing
purely vertical and horizontal motions
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Hence, we see that the cyclotron motion is transformed into purely vertical motion, while the
drift motion is transformed to purely horizontal motion. The emittances for these two modes are
then
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OBTAINING VERTICAL EMITTANCE SMALLER THAN THE INITIAL THERMAL
EMITTANCE

The horizontal and vertical emittances are direct descendants of the emittances of the drift
and cyclotron motions (or negative and positive circular mode motions). From the expressions
for the horizontal and vertical emittances above, we may write
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The emittance ratio, then, is [2]

† 

ex

ey

= 2
eBz( )2

2gbmc( )2

x0
2 + y0

2

¢ x 0
2 + ¢ y 0

2 =
1
2

1
2

eBz

mc
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2 r0
2 2

ethermal
2 =

1
2

pq /mc 2

ethermal
2  , (13)

where the thermal emittance is
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We can identify a condition by which we can obtain a vertical emittance lower than the initial
thermal emittance,

† 

pq

mc
=

1
2

eBz

mc
r0

2 > 2  ethermal .  (15)

Since the thermal emittance is proportional to 

† 

r0
2 , the inequality can be satisfied easily by

increasing the spot size at the cathode or the magnetic field at the cathode, or both.
This calculation of the horizontal and vertical emittances at the exit of the flat beam adapter

assumes that there is no uncorrelated emittance growth along the beamline. The majority of the
emittance growth in the beamline is correlated emittance growth between longitudinal slices of
the beam. By employing compensation techniques described previously, the correlated emittance
increase may be minimized, and the projected emittance at the adapter entrance can be brought
near to the lower limit set by the thermal emittance at the cathode.

The remainder of the emittance growth is primarily attributable to intra-beam scattering from
space charge effects. This produces growth in the uncorrelated, thermal spread of transverse
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momenta of the beam electrons. For large drift mode emittance, small changes to the transverse
momenta will have little effect. However, the cyclotron mode emittance is proportional to the
transverse thermal energy, and it will increase more quickly. The same is true for the horizontal
and vertical emittances, respectively, after the adapter. Growth in the uncorrelated (thermal)
emittance will impact the vertical emittance more severely than the horizontal, and will drive
down the achievable emittance ratio.

PREVIOUS STUDIES OF FLAT-BEAM TRANSFORMATION – EXISTENCE PROOF
Experiments have been conducted at FNPL [5-7] to demonstrate the technique of flat beam

production from a photoinjector. We describe the results of those experiments here.

Beam Rotation
The beam is observed by CCD cameras viewing aluminum-on-glass OTR screens. A

sequence of images at and downstream from the first horizontal slit array with nonzero magnetic
field on the cathode, but with zero excitation of the adapter quadrupoles, is shown in Figure 8-2.
X3 is located immediately before the entrance to the first skew quadrupole in the adapter lattice,
while X4 and X5 are located immediately preceding and following the bunch compressor,
respectively. That the beam has angular momentum is demonstrated in the apparent rotation of
slit images, and may be measured for comparison with estimates from the theoretical model.

Measurement of the beamlet distributions in the slit images provides a means of determining
the vertical emittance (assumed equal to the horizontal since azimuthal symmetry has not been
broken), as well as the optical functions of the beam at the location of X3 [8].

Figure 8-2 Beam spot at slit analyzer and downstream beamlet images showing angular
momentum content of beam.
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Flat Beam Emittance
Flat beams were produced by energizing the skew quadrupoles shown in Figure 8-1 of

section 7-Experimental Studies at FNPL. The beam was observed at various locations along the
beamline downstream of the skew quadrupole adapter to ensure that the angular momentum was
completely removed. At L6, approximately 3 m downstream from the adapter exit, the beam spot
size was measured with an OTR foil. After measuring the spot size, vertical or horizontal
analyzer slits were placed into the beamline and the resulting distribution of beamlets was
measured at L7 and L8, located approximately 40 cm and 80 cm, respectively, downstream from
the analyzer slits. The spot size and beamlet distributions are shown in Figures 8-3 and 8-4.

Figure 8-3 Beam spot image downstream from the adapter (left), and beamlet distribution
produced by horizontal slits.

In these figures, the beam is ‘flat’ in the horizontal plane, with the larger emittance plane in the
vertical direction. From slit data in this orientation, the measured ratio of emittances is ~50:  45
mm (vertical) by 0.9 mm (horizontal) for a beam with charge ~1"nC. This value is known to be a
lower bound on the actual emittance ratio, since the horizontal emittance measurement is
resolution limited, as seen in Figure 8-4. The standard deviation of the narrow distribution is
comparable to a single pixel of the CCD camera viewing the screen.
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Figure 8-4 Beam spot image downstream from the adapter (left), and beamlet distribution
produced by vertical slits (center and right).

Future Work at FNPL
Work at FNPL will continue to explore means of optimizing the flat beam transformation and

to explore the available parameter space.
The influence of space charge effects will be decreased with an increase in the laser pulse

length from 10 ps to 30 ps. This will primarily affect the space charge induced thermal emittance
growth from intra-beam scattering, and thus the growth in cyclotron emittance. However, the
effect on the contribution to the projected emittance from correlations between different
longitudinal slices must also be studied.

We will carry on parametric studies of emittance compensation and flat beam production.
One particular are that will receive more attention in the near future is the sensitivity of the beam
emittance to changes in the rf gun gradient and launch phase. We will also study flat beam
transforms of higher (>1 nC) charge beams.

The adapter optics and matching will be studied in more detail. The beam optical functions at
the adapter entrance will be measured and compared with simulation. We will study via
simulation different configurations of the adapter lattice (beyond the three skew quadrupoles) to
optimize the flat beam transformation and to minimize the horizontal beam emittance
downstream of the adapter.

We will continue working with FNPL personnel to develop diagnostic means of measuring
large emittance-ratio beams. The current optical diagnostics are resolution limited, and an
increase by a factor of 2-5 is foreseen to measure beams with emittance ratios greater than 50.
We will incorporate the measurement diagnostics into our simulations to more accurately model
the experiments.
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FLAT BEAM ADAPTER DESIGN
Preliminary studies with PARMELA of the integrated 4-cell rf gun with flat beam adapter

have been performed to investigate the sensitivities of lattice geometry and space charge effects
to emittance of the resulting beam. These on-going studies are being conducted in parallel with
HOMDYN studies of emittance compensation described earlier, and will eventually be combined
into an integrated description of the complete beam dynamics in the injector.

In the example shown here, we have simulated the beam dynamics in the rf gun for a
particular set of parameters, shown in Table 8-1. The rf fields in this case were calculated with
SUPERFISH. For the beam dynamics simulations in the region between the cathode and the
entrance to the flat beam adapter, where the beamline still maintains azimuthal symmetry, the 2D
(r-z) space charge algorithm was employed.

Table 8-1:  RF Gun parameters for PARMELA simulation

RF gradient (1st cell / 2nd-4th cells) 64 / 40 MV/m
Beam energy at RF gun exit 10.22 MeV

Solenoid field  (peak / cathode) 1500 / 1032 Gauss

Bunch charge 1 nC
Pulse length (FWHM) 20 ps

Spot size (edge / RMS radius) 2.4 / 1.7 mm

Thermal emittance (RMS) 0.7 π mm-mrad

The solenoid field profile from the cathode plane (z = 0 cm) to the entrance of the flat beam
adapter (z = 100 cm) is shown in Figure 8-5. The beam envelope and radial emittance up to the
adapter entrance are shown in Figure 8-6.
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Figure 8-5 Longitudinal distribution of on-axis solenoid field in rf gun
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With a solenoid field value at the cathode of 1032 Gauss and beam edge radius of 2.4 mm,
the canonical angular momentum contributes (

† 

pq /2mc ) ~ 44π mm- mrad to the effective
emittance. The theoretical achievable emittance ratio in this configuration is then seen to be

† 

pq /mc( )2 /2ethermal
2  ~ 8000. This simple estimate does not include degradation due to nonlinear

space charge and external field influenced emittance growth. Any normal emittance growth
experienced between the cathode and the adapter will increase the emittance in the cyclotron
degree of freedom and, hence, lower the achievable emittance ratio while raising the lower
bound on the achievable vertical emittance.
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Figure 8-6 RMS beam envelope (mm) and projected RMS radial emittance (π mm-mrad)
(PARMELA)

At the entrance to the adapter section, PARMELA calculates the drift mode emittance to be
~70π mm-mrad and the cyclotron mode emittance to ~0.097π mm-mrad. The adapter skew
quadrupole lattice under consideration here is shown in Figure 8-7.

Figure 8-7 Geometry of skew quadrupole adapter beamline.

The hard-edged skew quadrupole gradients were determined to be –43.75, 12.5, and –5.88
gauss/cm for the entrance, middle, and exit quadrupoles, respectively. These gradients were
determined by minimizing the vertical emittance at the exit of the adapter section, but without
the contribution from space charge effects. Once this operating point was found, 3D space charge
contributions were added to subsequent PARMELA runs. The horizontal and vertical emittances
calculated are listed in Table 8-2.
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Table 8-2  Calculated emittances from PARMELA in the adapter section

ex  (π mm-mrad) ey  (π mm-
mrad)

Adapter entrance 69.754 0.097
Exit: No Space Charge 69.756 0.097
Exit: 3D Space Charge 69.667 0.273

Space charge effects
From above example, in the absence of space charge effects in the adapter beamline, the

circular mode emittances precisely predict the flat beam emittances. However, with the influence
of space charge effects included in the calculation, the vertical emittance almost tripled.

The growth in vertical emittance results from two sources: (i) mismatching of the optical
functions in the adapter from linear space charge detuning and  dispersion; and (ii) emittance
growth from mismatching the input beam distribution due to nonlinear space charge forces. Our
task, then, is to find the optimal working point in the presence of space charge detuning, to
calculate emittance growth from nonlinear space charge forces and dispersion, and to devise
means of minimizing the emittance growth.

Non-uniform longitudinal profile – slice effects
The transverse beam distribution at the exit of the adapter beamline can be analyzed with

respect to longitudinal position along the bunch. Space charge and dispersion effects in the
upstream portion of the injector redistribute the longitudinal profile from uniform to a more
parabolic shape. This is shown in Figure 8-8.

Figure 8-8 Slice population and transverse emittance at the adapter exit.
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In the absence of space charge effects, the symmetry of the slice emittance distribution at the
adapter exit follows that of the longitudinal phase space at the adapter entrance. Figure 8-9
shows the influence of space charge effects in the adapter upon the longitudinal phase space. We
see that the correlated energy spread approximately doubles in this region.

Matching to the adapter lattice
The adapter parameters have been tuned to match the center slice of the beam. From the y-z

plane view, a dumbbell-shaped distribution is observed. Figure 8-10 shows the head and tail are
mismatched with respect to the beam center. They carry residual angular momentum of opposite
sign. At the exit of the transformer, the y-z beam distribution shows the matching point has
shifted towards the tail (and lower energies). The slice emittance in Figure 8-88.8 shows the head
contributing more heavily to the projected emittance.

Figure 8-9 Longitudinal phase space at adapter entrance (z = 100 cm) and exit (z = 286.5 cm).
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Figure 8-10 The y-z beam distribution at the adapter exit.

Influence of energy mismatch
To study the effect that a mismatch in the beam energy may have on the adapter

transformation without the influence of additional space charge effects, we have simulated the
beam dynamics through the adapter by intentionally varying energy at which the adapter is
matched. In this way, skew quadrupole gradients have been re-optimized for beam energies
varying from 10.22 MeV (the nominal value) to 9.50 MeV. The beam (with energy 10.22 MeV)
is then re-run through this lattice and the output beam distribution is analyzed (see Figure 8-11).

 From these plots, we observe that the matching point shifts from the bunch centroid toward
the bunch head as the mismatch energy decreases, with a similar behavior to the effect of space
charge detuning.

Adding the influence of space charge effects demonstrates this effect more clearly. In Figure
8. 12, we plot the projected vertical emittance of the beam at the adapter exit, both with and
without space charge effects, as a function of the mismatch energy. Without space charge effects,
the projected emittance rises monotonically with the degree of mismatch, starting from a
matched condition at the nominal energy (10.22 MeV). In the case where space charge effects
are included, the optimal condition of the lattice corresponds to an energy of ~9.66 MeV
(calculated without detuning effects).
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Figure 8-11 Vertical-longitudinal (y-z) beam distribution under energy mismatch conditions
(space charge effects neglected).

Figure 8-12 Vertical emittance versus adapter mismatch energy.
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Discussion of results and future studies
The adapter optics beamline and the beam transport simulations shown here do not yet

represent an optimized design. The evolution of the radial emittance in the rf gun and following
drift section to the adapter entrance has not been optimized for lowest possible emittance. The
adapter entrance is, in fact, located near the secondary local minimum of the radial emittance
oscillation. The distribution of slice emittances at the adapter entrance (which matches the
distribution at the adapter exit in the absence of space charge effects within the adapter; see
Figure 8-8) shows the lack of compensation. However, a slightly different tune of the solenoids
around the rf gun will place local emittance minimum at the adapter entrance.

We have demonstrated two effects of space charge on the beam transport in the adapter
section. First, the effect of linear space charge tune depression alters the matching condition of
the beam within the skew quadrupole adapter lattice such that the beam centroid is matched only
for higher quadrupole gradients. The effect of beam charge on the betatron phase advances
required for the transformation will be studied. Second, the differences in the correlated sectors
of the slice emittances resulting in the variation of cyclotron tunes advance for different slices
creates a longitudinally varying mismatch condition along the beam. Again, this may be
corrected once emittance compensation is employed to it fullest extent.

The energy spread of the beam at the adapter entrance is roughly ±15 keV, matching the
required specifications.  However, this value increases by a factor of ~2 by the end of the adapter
section. Whether this is due to space charge effects only, or if there is an effect due to the
coupled transverse beam distributions transiting the skew quadrupole channel will be studied.
For a purely longitudinal space charge effect, this correlated energy spread may be corrected by
appropriate phasing of the individual rf gun cavities.

We must assess the impact of different optics and models on the emittance development. The
fringe-field at the exit of the solenoid region has not been optimized. Implementing iron field
clamps at the exit will cause the fringe to decay more rapidly without affecting the cyclotron
tune. The decay of the fringe is responsible, however, for preparing the beam to be injected into
the adapter. A more detailed study of the dynamics within the fringe field region needs to be
performed and the impact on the emittances clarified. Likewise, the skew quadrupoles used in
the adapter will have very significant fringe fields, so that simulation of the beam dynamics
within the adapter will need to include the effect of pseudo-multipoles.

REFERENCES
 [1] A.V. Burov and V.V. Danilov, ‘An Insertion to Eliminate Horizontal Temperature of High

Energy Electron Beam,’ FERMILAB-TM-2043, 1998.
[2] A. Burov, et al., ‘Optical Principles of Beam Transport for Relativistic Cooling,’

FERMILAB-Pub-00/100-T, 2000.
[3] A. Burov, et al., ‘Circular Modes, Beam Adapters and their Applications in Beam Optics’,

FERMILAB-Pub-01/060-T, 2001.
[4] R. Brinkmann, et. al., ‘A Flat Beam Electron Source for Linear Colliders,’ TESLA 99-09,

DESY-Hamburg, 1999.



Chapter 8 / Page 16

[5] I. Bohnet, et al., ‘The Flat Beam Experiment at the FNAL Photoinjector,’ Proceedings of
the XX International Linac Conference, Monterey, 2000.

[6] D. Edwards, et al., ‘Status of Flat Electron Beam Production’, Proceeding of the 2001
Particle Accelerator Conference, (IEEE, New York), 2001.

[7] E. Thrane, et al., ‘Photoinjector Production of a Flat Electron Beam,’ to appear in
Proceedings of the XXI International Linac Conference, Gyeongyu, Korea, 2002.

[8] S.G. Anderson, et al., ‘Space-charge effects in high brightness electron beam emittance
measurements,’ Physical Review Special Topics – Accelerators and Beams, 5, 014201
(2002).


